

Unit Outline (Higher Education)

Institute / School: Institute of Innovation, Science & Sustainability

Unit Title: Electrical Machines Fundamentals

Unit ID: ENGRG2205

Credit Points: 15.00

Prerequisite(s): ENGRG1004

Co-requisite(s): Nil

Exclusion(s): ENGIN2404

ASCED: 031301

Description of the Unit:

This unit provides a broad overview of electrical and electronic drives and allows students to learn about machinery fundamentals and principles, transformers and AC / DC motors and generators. The unit also covers the fundamental concepts of power electronics and explains its application in motor control.

Grade Scheme: Graded (HD, D, C, P, MF, F, XF)

Work Experience:

No work experience

Placement Component: No

Supplementary Assessment: Yes

Where supplementary assessment is available a student must have failed overall in the Unit but gained a final mark of 45 per cent or above, has completed all major assessment tasks (including all sub-components where a task has multiple parts) as specified in the Unit Description and is not eligible for any other form of supplementary assessment

Course Level:

Level of Unit in Course	AQF Level of Course					
	5	6	7	8	9	10
Introductory						
Intermediate			~			
Advanced						

Learning Outcomes:

On successful completion of the unit the students are expected to be able to:

Knowledge:

- **K1.** Explain electric machinery principles in describing operations and characteristics of transformers, motors and generators.
- **K2.** Describe power electronics application to electronic motor control.
- **K3.** Explain operations and principles of single phase special purpose motors.
- **K4.** Differentiate between different machinery and their applicability to execute a specific task

Skills:

- **S1.** Calculate machine power and performance parameters.
- **S2.** Draw circuit equivalence for relevant transformers, motors and generators.
- **S3.** Design and select suitable power electronics control element for motor control.

Application of knowledge and skills:

- **A1.** Determine a suitable machinery for a particular engineering system operating under certain conditions.
- **A2.** Design and construct an electronic motor controller.

Unit Content:

Topics may include:

- 1. Introduction to machinery principles
- 2. Transformers
- 3. Introduction to power electronics
- 4. AC and DC machinery fundamentals
- 5. Synchronous motors and generators
- 6. DC motors and generators
- 7. Single phase and special purpose motors (e.g. stepper motors)

Learning Task and Assessment:

Learning Outcomes Assessed	Assessment Tasks	Assessment Type	Weighting
S1-S3, A1-A2	Experimental work and / or projects to verify students ability to apply knowledge and skills acquired in the unit	Reports, demonstrations	10 - 30%
K1-K4, S1-S3	Relevant tasks and problems to enforce understanding of the students and help in gradual development of knowledge and skills throughout the unit	Assignments, quizzes	10 - 30%
K1-K4	Questions and problems related to the unit contents	Mid and / or End of semester examination	40 - 60%

Adopted Reference Style:

IEEE

Refer to the <u>library website</u> for more information

Fed Cite - referencing tool